Short transcript-derived fragments from the metal hyperaccumulator model species Arabidopsis halleri.
نویسندگان
چکیده
Phytoremediation of metal contaminated soils requires high-biomass plants exhibiting tolerance to and accumulation of metal contaminants. However, very little is known about the genes controlling these traits. In order to better understand this, Arabidopsis halleri ssp. halleri (L.) O'Kane and Al-Shehbaz, a naturally selected zinc and cadmium tolerant plant species capable of hyperaccumulating both metals, is a suitable model plant. To date, the scarcity of sequence information from A. halleri is still limiting its use as a model organism. Here we report 128 transcript-derived sequence fragments (TDFs) identified in a cDNA-AFLP approach aimed at identifying metal-regulated transcripts in roots. In addition we show that in roots of A. halleri, transcript levels of AhPDR11, encoding an ATP-binding-cassette (ABC) transport protein, are slightly induced in response to metal exposure.
منابع مشابه
Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica
Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and ...
متن کاملZinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri.
The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these extreme physiological traits, A. halleri phylogenetically belongs to the sister clade of Arabidopsis thaliana. Using a combination of genome-wide cross species microarray analysis and real-time rever...
متن کاملCATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.
Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Met...
متن کاملControl of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe
Zinc (Zn) is an essential plant micronutrient but is toxic in excess. To cope with excess Zn, plant species possess a strict metal homeostasis mechanism. The Zn hyperaccumulator Arabidopsis halleri has developed various adaptive mechanisms involving uptake, chelation, translocation and sequestration of Zn. In this mini review, we broadly discuss the different Zn tolerance mechanisms and then fo...
متن کاملRoot-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.
Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that exc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Zeitschrift fur Naturforschung. C, Journal of biosciences
دوره 60 3-4 شماره
صفحات -
تاریخ انتشار 2005